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PACS 45.50.-j – Dynamics and kinematics of a particle and a system of particles
PACS 45.70.Mg – Granular flow: mixing, segregation and stratification
PACS 89.65.Ef – Social organizations; anthropology

Abstract – Moving through a dense crowd to help someone can be a tough task for emergency
services as well as for security agents willing to ease a star to cross a crowd of fans. High densities
reduce the mobility of an individual who wants to move and cross a crowd by pushing their way
through. In this work, we study two situations. The first considers a person who moves through
a static crowd while the second reports on a moving person (e.g., a star) who crosses a crowd
of fans. Despite the simplicity of the mechanical model we use to describe a moving person who
pushes apart the people of the crowd or tries to avoid them, we obtain some non-trivial results.
Depending on the rigidity of a static crowd or on the aggressiveness of fans we extract quantities
like the average velocity of a person moving across a crowd or the critical number of fans above
which any motion of a star is impossible.

Copyright c© EPLA, 2018

Introduction. – The study of pedestrian dynamics has
become a very important issue [1] during the last two
decades. A key challenge facing civil security [2] over the
next years will be how to keep security expectations at
a high level while confronted to the increasing number
of mass events, where several thousands of people gather
in confined areas. Depending on the event and the so-
cial context, situations can markedly vary. For example,
crowd stampede induced by panic or jamming during es-
cape panic [3] or motion of people during rock concerts [4]
are collective phenomena currently observed in specific so-
cial settings which can emerge from simple rules at the
scale of each individual [5]. Numerical simulations are
generally inspired from social force models [3,6–10], cel-
lular automata [11–14], and artificial intelligence-based
models [15,16]. These models start from inter-individual
“social” forces and describe quite well the currently ob-
served collective effects at the scale of the crowd.

Beside the collective behaviours, we consider here the
motion of a person who needs or wants to move through a
static crowd of standing people or through a crowd of con-
verging fans. Surprisingly, this knowledge has been largely
neglected but can be essential to know how to provide as-
sistance to someone in a middle of a crowd for example or
to evaluate the time necessary for someone to escape from
a crowd. People in the crowd can be more or less reluctant
to let someone pass. For example, during a rock concert,

moving toward the stage can be very difficult while moving
back from the stage by leaving your place, will encourage
people to let you pass.

In this work, a simple model is used to extract general
tendencies and strong effects. We believe that this could
pave the way to more elaborated models in order to de-
scribe quantitatively specific real situations. We develop
a simple mechanical force model, from which emerges a
non-trivial dynamics for the moving person (MP). In par-
ticular, we examine two strategies that can be used to
move through a crowd. In the first one, the MP can push
people without trying to avoid them when moving in a
given direction. In the second one, the MP tries to avoid
people in front of him/her and pushes them if necessary.
Note that we will use the term “push” when we consider
a mechanical contact between the moving person and an
individual of the crowd. This contact can simply be a
visual contact or a real mechanical contact depending on
the situation. However, we always use the term “push”
for simplicity and we model it as a mechanical force. We
define a dimensionless parameter that allows to quantify
this social rigidity (see below). For a very soft crowd, we
observe that a person can move with a maximum attain-
able velocity which depends on the crowd density with a
simple polynomial law.

Then, we examine the case of a star moving through
a crowd of fans. The fans converge toward the star at

54003-p1
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Fig. 1: (Colour online) (a) Schematic representation of the
system: MP (closed symbol) and individuals (open symbols).
(b) Exerted mechanical forces exerted when the MP is in con-
tact with the i-th individual of the crowd (ǫiM = 1).

a given desired velocity. We define a dimensionless pa-
rameter which measures the ratio between a fan’s and the
star’s desired velocities. Then, we study the critical num-
ber of fans above which the motion of the star becomes
impossible as a function of this dimensionless parameter.
It appears that the motion of the star can be stopped for a
very small initial density of fans (14% ≈ 1.1 discoidal per-
son /m2), much below the values usually known as critical
for evacuation processes [17].

A moving person through a static crowd. – We
use a simple mechanical model based on forces exerted be-
tween individuals. The model is similar to a social force
model [3,8,18] for crowds. In force models, the main ingre-
dients are a driving force which makes an individual move,
a repulsion force between people to model contacts and a
possible attraction force which represent some affinity of
people (friends, street artist, favourite position, . . . ).

Usually, the social force is such that F ∝ −(v −
v0)/τr [8] for an individual who has an actual velocity
v and a desired velocity v0. This force tends to re-
store the desired velocity with an inertial (or reaction)
time τr. Injecting this force into Newton’s second law
gives v̇ = −v/τr +v0/τr +F′ (the mass is usually set to 1,
F′ represents other forces in the system). The first term
of the right-hand side is a dissipation and the second term
is a driving force. In our study, we use an overdamped
dynamics approach, i.e. without inertia: we assume that
τr is very small so that once released from contacts (i.e.
F′ = 0), the individuals can instantaneously reach their
desired limit velocity v0. Estimation of the reaction time
is about τr ≈ 0.5 s [19]. The overdamped dynamics ap-
proach also prevents the appearance of unrealistic effects
due to Newton’s equation of motion describing particles
with inertia [20] such as overlapping and oscillations of
the modelled pedestrians [21]. In our case, the absence of
inertia also allows to avoid unrealistic oscillations when an
individual moves back to its favourite position.

We consider a moving person (MP) at some position
xM = xMex + yMey who wants to go in a given direc-
tion (x > 0) and must cross a crowd of people on the way

(fig. 1). The crowd consists in N individuals (including the
MP), initially uniformly distributed at random positions
xi = x0,iex + y0,iey (i = 1, . . . , N) in a square domain of
size L × L. We denote R the “radius” of an individual
modelled as a disk, and assume L ≫ R. In our simula-
tions, we use 1 < N < 410 and L/R = 40. The N indi-
viduals are free to move out of the initial L × L domain
(open boundary conditions). The surface fraction of dis-
coidal people is defined as φ = NπR2/L2. To account for
the more realistic human elliptical shape, we average the
estimated semi-major and semi-minor axes a ≈ 0.25 m
and b ≈ 0.15 m, and assume that the typical radius is
R ≈ 0.2 m for each “discoidal” individual. This leads to a
surface of ≈0.13 m2 per person. Thus, the number of per-
sons per square meters is given by N/L2 ≈ φ(%)/13 for
discoidal people. In order to obtain random configurations
with high surface fractions (close to maximum packing),
we first distribute the N individuals into a larger square
domain (L′ ×L′) with L′ = 1.2L and then apply a conver-
gent force to each individual to make them converge into
the L × L domain. With this method, we can reach den-
sities up to φ ≈ 80%, very close to the maximum random
packing value φmax ≈ 82% [22]. Note that in this model,
R represents the typical scale for local interactions. In
case of real mechanical contacts, it represents for instance
the average size of a person; but it can also account for
individual territories if social interactions are considered.

The individuals of the crowd (except the MP) are static
until they are pushed by the MP or their neighbours. They
can be more or less reluctant to move from their initial
position, as it is usually the case for standing people during
a show for example.

The MP has a “free-state” (φ → 0) desired velocity
vM (φ → 0) ≡ v0ex, which in an overdamped approach is
equivalent to having a driving force F0 = η vM (φ → 0),
where 1

η
can be regarded as a mobility. Without loss of

generality, we can take η = 1. In the presence of the
crowd, vM (φ) depends on the surface fraction φ.

We define the MP velocity vM as well as the velocity of
the i-th individual (i �= M) as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

η vM = F0 + f +

N
∑

i�=M

ǫi,MFC
i,M ,

η vi�=M = FR
i +

N
∑

j �=i

ǫi,jF
C
j,i,

(1)

where f is a noise term which takes into account random
fluctuations of the MP’s behaviour arising from acciden-
tal or deliberate deviations from the usual rule of motion
(determined by F0). Interactions between individuals (in-
cluding the MP) are accounted for through a contact force
which prevents inter-penetrations and which depends only
on individuals interdistance. The force FC

i,j is the contact
repulsive force acting between the i-th and j-th individ-
uals (fig. 1). Note that this contact force, usually used
in crowd models, does not take into account tangential
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friction between individuals. The parameter ǫi,j measures
if there is a contact between the i-th and j-th individuals,
if |xj − xi| > 2R then ǫi,j = 0 and ǫi,j = 1 otherwise. We
use a social elastic force which links an individual to their
favourite position: the retraction force is all the greater
as the person moves away from his initial (favourite) posi-
tion, with a linear dependence on the distance to the initial
position. The elastic retraction force FR

i acts on the i-th
(i �= M) individual if xi �= x0,i. The unitary vector ni,j is
oriented from i-th to j-th individual. The retraction and
contact forces are, respectively, defined as follows:

{

FR
i�=M = −kR (xi − xi,0) ,

FC
i,j = −kC (|xj − xi| − 2R)ni,j ,

(2)

where kR and kC are spring constants. The contact spring
repels two close bodies which are below a diameter apart
from each other, while the retraction spring elastically
maintains an individual to its initial position except the
MP who is not linked to its initial position. Each individ-
ual can move pushed by the MP or by another individual
through a cascade of contacts. Note that we consider that
the non-moving individuals are static when not affected
by the MP or their neighbours. Therefore we do not con-
sider any random fluctuation for the individuals around
their favourite position.

We use an explicit Euler scheme to discretize the system
of dynamic equations ẋi = vi, ∀i, i.e., writing X = {xi}
and V = {vi}, we have Xn+1 = Xn + VnΔt, with Vn

given by (1), and where Δt is the time step, the su-
perscripts denoting time. We also write the noise term
as f = α dw/dt, where w(t) is a Wiener process. Its
time discretization then writes wn+1 = wn + ξn, with
ξn ∼ N 2D(0, 1) some normally distributed vector in the
(x, y)-plane. We assume that a reasonable amplitude for
the noise corresponds to α ≈ F0/10.

We can define a relaxation time associated to the re-
traction spring such as τ = η/kR and a ballistic time as-
sociated with the MP motion, τB = 2R/v0. We define the
dimensionless relaxation time T = τ/τB. Note that T also
represents the ratio between the driving force F0 = ηv0

and the typical retraction force 2kRR. When T ≪ 1, the
crowd can be considered as rigid: individuals are very re-
luctant to move. On the contrary, for T ≫ 1, the crowd
is soft and individuals can move away from their initial
position, even without any retraction force if T → ∞.

We compute the motion of the MP as a function of
time for some given driving force F0. We consider two
cases for the choice of F0. The first consists in fixing
F0 = F0ex. This is the “mindless” option, where no local
strategy is used to help the motion. In the second option,
F0 is chosen depending on the neighbourhood of the MP:
we consider 180 possible directions from the actual MP’s
position from θ = −π/3 to θ = π/3, where θ is the angle
between F0 and ex, and calculate the density of people
along each direction on a distance equal to two diameters
in front of the MP. We then select the direction associated

0 500 1000
-20
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0
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20

t/τB

x
  
 /

R
M

-20 -10 0 10 20
-20

-10

0

10

20
y
  
/R

x  /RM

M

a)

b)

Fig. 2: (Colour online) (a) Dimensionless time-dependent posi-
tion along xM/R as a function of t/τB. Plus: first option (only
pushing); triangles: second option (pushing and avoiding). The
first option leads to a trapping while the second allows the MP
to move forward (T = 0.5 and φ = 40%). (b) Corresponding
trajectories of the MP. The circles indicate when the MP is
temporarily trapped. With the first strategy, the MP ends in
a trap.

with the smallest density, and the MP moves with the se-
lected driving force during a time 4R/v0. After this time,
a new direction is selected with the same method. This
way of avoiding people in front of the MP is of course not
an optimal strategy to find a path through the labyrinthic
crowd (for example, MP cannot go backward to find an-
other path). However, it seems to be the kind of strategy
used by a person who cannot evaluate all the possibilities
to get out from the crowd. Note, that finding an optimal
way is not an easy process, since the crowd is not simply
labyrinthic but also deformable.
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Fig. 3: (Colour online) Dimensionless MP velocity v̄M,x/v0 (av-
eraged on 1000 trials) as a function of φ for different T values:
(a) T = 0.05, (b) T = 0.25, (c) T = 1 and (d) T → ∞. Open
circles: without avoidances; closed circles: with avoidances.
(d) The solid curve is a fit (see text).

Results. In fig. 2, we observe that the motion of the
MP is characterized by a stick-slip–like motion. The MP
can move for a while and can be temporarily stopped or
even definitively trapped behind a group of people. If MP
uses the second option and tries to avoid the people of
the crowd (still pushing people in case of contacts), we
clearly see that some stick events can be eliminated. Of
course, depending on the crowd configuration —i.e., the
initial position of each individual— the MP velocity can
vary: sometimes the MP can never escape from a trap
and remains at the same position while for some other
configurations they find their way easily. Therefore, for
each measure of vM we make a sampling on 1000 trials on
which we calculate the average value v̄M .

In fig. 3, we plot v̄M,x/v0 as a function of φ for differ-
ent values of the dimensionless parameter T . For a rigid
crowd (T ≪ 1) (fig. 3(a)), we clearly see that the strat-
egy of avoiding people rather than only pushing them is
more efficient when the MP crosses the crowd. However,
above a given critical density φc, vM vanishes for both op-
tions, meaning that the MP is trapped in the crowd. This
“avoiding” strategy, though obvious (it is easier to avoid
fixed and rigid obstacles than trying to push them apart),
becomes even more efficient for a less rigid crowd associ-
ated with a given value of T such as 0 < T < 1 (fig. 3(b)).
Both options are equivalent when T ≈ 1 (fig. 3(c)). How-
ever, when the crowd is soft enough (T ≫ 1) (fig. 3(d)),
it becomes more efficient to push people, since avoidances
lead the MP to spend time on “side paths” which are not
parallel to the x-axis and that are thus much less efficient
to get out from the crowd.

Note that we can extract the maximum possible velocity
of a MP in an infinitely soft crowd (T → ∞) as a function
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/V0

Fig. 4: (Colour online) Probability distribution of MP veloc-
ities along x. Dashed curves correspond to motion without
strategy and solid curves to motion with avoidance strategy.
(a) φ = 20% and T = 0.25, (b) φ = 60% and T → ∞.
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Fig. 5: (Colour online) Critical density φc above which the MP
motion becomes impossible as a function of the crowd rigid-
ity T . Open circles: first option, close symbols: second option.
The horizontal dotted line indicates the maximum crowd den-
sity attainable with a random packing at 0.82%. Solid and
dashed lines are just guides for the eyes.

of φ (fig. 3(d)). The MP velocity can be described with
a simple polynomial dependence vM = v0(1 − αφ − βφ2)
with α = 0.39± 0.01 and β = 0.16± 0.01. This expression
somehow represents the rheological law of a soft crowd
as a virial expansion of the velocity. It also gives an up-
per bound for the velocity of a moving person knowing
the density φ and can help to evaluate the minimal time
needed to provide assistance to a given person in a mid-
dle of a static crowd. We can compare our result ob-
tained with open boundary conditions (and for T → ∞)
with the same situation with periodic boundary condi-
tions (PBC) [23]. In our case the motion is still possi-
ble for an initial high packing density which is not the
case with PBC. We also plot the probability distribution
ρ of MP velocities (fig. 4). We clearly see that for a rigid
crowd (T = 0.25), the MP tries to avoid the quasi-static
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Fig. 6: (Colour online) Difference of MP dimensionless veloc-
ities with and without avoidances (Δv̄m,x/v0) as a function
of T for two different density values. Circles: φ = 40% and
squares φ = 20%. The value Δv̄m,x is averaged over 1000 trials.

individuals, the peak at VM,x/V0 = 0.5 in fig. 4 corre-
sponds to situations where the MP avoids an individual
and deviates form the x-axis by an angle of ±60 degrees
and this strategy of avoidance allows the MP to move
faster. On the contrary, for a very soft crowd (T → ∞) the
first option is better, the MP moves with higher horizontal
velocities (fig. 4(b)).

Figure 5 shows the critical density for the two options
as a function of the crowd rigidity T . We clearly observe
that the two curves cross each other at T ≈ 1.

In fig. 6, we plot the difference of MP velocities with and
without avoidances [resp. option (2) and (1)]: Δv̄M,x =
[

v̄
(2)
M,x − v̄

(1)
M,x

]

/v0 as a function of T for two values of the

crowd density φ = 20% and φ = 40%. For both densities,
an optimal velocity difference is obtained for 0 < T < 1,
but this optimum depends on φ. The second option (with
avoidances) drives the MP in corridors of low density and
in general leads the MP in front of two individuals sepa-
rated by a distance d ≪ R (fig. 7(a)). We have numerically
calculated the threshold value Ts above which the MP can
open a gap between two individuals (fig. 7(b), (c)). We
obtain that Ts ≈ 0.53–0.72 d/R + O[(d/R)2] (fig. 8). This
very simplified approach cannot describe precisely what
happens at high density because of the multiple contacts
between individuals. However, this qualitative behavior
is interesting and shows that when d/R ≪ 1, an optimal
value for Δv̄M,x is obtained close to Ts ≈ 0.5 in surpris-
ingly good agreement with our numerical results. The
value of Ts decreases when the crowd density decreases,
i.e., when d increases (fig. 6).

A star moving through a group of fans. – Let us
now consider that the crowd is a group of fans converging
with some desired velocity vf towards the moving person

2d

(a) (b) (c) (d)

Option2

ℓ

v0 v0

Fig. 7: (Colour online) The MP opens a gap between two in-
dividuals at distance 2d. (a) Due to the second option the
MP moves at velocity v0 and arrives in front of two individu-
als. (b) MP collides the individuals and can open the gap once
MP moves on a distance ℓ and reaches position (c) if T > Ts.
(d) MP can escape at velocity v0.
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Fig. 8: (Colour online) Threshold value Ts as a function of
d/R. The dashed curve corresponds to d/R ≪ 1: Ts ≈

0.53–0.72d/R.
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Fig. 9: (Colour online) Snapshot of a star moving through a
crowd of fans at ψ = 0.2. Gray circles represent the fans,
the dark coloured symbol is the star, the arrow symbolises the
velocity. (a) Initially the star penetrates in the crowd (initial
density φ ≈ 65%); (b) the star’s velocity decreases during the
convergence of fans; (c) the velocity reaches an asymptotic limit
value VL: at this density VL = 0.

(MP) while the latter (now a star) is still moving with the
desired velocity v0. Each individual is no longer attached
to any favourite position (T → ∞) and the star moves
in the x-direction as before without trying to avoid people
(first option only). We define the dimensionless parameter
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Fig. 10: Star velocity as a function of time (N = 128 and
ψ = 0.2). An asymptotic limit velocity VL is reached.

ψ = vf/v0 = FF /F 0 which measures the degree of attrac-
tion of the fans to the star, ranging from indifferent fans
(ψ = 0) to very motivated fans (ψ = 1). We restrict our
study to the interval 0 < ψ < 1 (above this value the star
cannot move at all). Expressions for the velocities show
similarities with eq. (1) except that retraction force FR

i

acting on the i-th individual is now replaced by a force FF
i

which is oriented from its i-th position to the position of
the star: FF

i = FF ni,M with FF = η vf . This force van-
ishes for a given i-th fan who is in contact (ǫiM = 1) and
behind (xi < xMP ) the star, this makes the fan moving
with the star when they are together in contact. However,
the force does not vanish if the fan is in contact but in
front (xi > xMP ) of the star. This fore-and-aft asymme-
try creates a congestion in front of the star which stops
the motion above some given density. Without this asym-
metry the forces applied by fans behind and in front of
the star mutually compensate on average and do not re-
ally affect the motion of the star. The star’s velocity vM

remains as given in eq. (1) while the velocity of the i-th
fan is such as

η vi�=M = Fi +

N
∑

j �=i

ǫi,jF
C
j,i, (3)

with the fore-and-aft asymmetry:

Fi = (1 − ǫi,M )FF
i + ǫi,MR (ex.nM,i)FF

i , (4)

using the ramp function R(x) which is such that R(x) = x
if x > 0 and R(x) = 0 otherwise.

Results. Figure 9 shows snapshots for ψ = 0.2. We
start the simulation with a crowd of N fans uniformly
distributed in a square L × L domain, much larger than
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Fig. 11: (Colour online) Star’s limit velocity as a function
of the number of fans N for different values of parameter
ψ. Circles: ψ = 0, diamonds: ψ = 0.1, triangles: ψ = 0.2,
squares: ψ = 0.5.
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Fig. 12: Critical number of fans above which a star cannot
move once surrounded as a function of parameter ψ.

the size of a given individual. As before the individu-
als are free to move out of the initial domain. Note that
the ψ = 0 case is similar to the preceding case where indi-
viduals have no favourite position and the MP chooses the
first option (fig. 3(d)). But when the star starts to cross
the crowd with ψ = 0.2, fig. 10 shows a transient regime
where the MP’s velocity progressively decreases while the
fans converge toward the star. Then, the N fans form a
very dense cluster around the star (fig. 9(c)), who moves
at a constant limit velocity with the group. The transient
regime depends on the initial density of the fans. But here,
we investigate the limit velocity of the star surrounded by
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N fans. Figure 11 shows this limit velocity v̄L (averaged on
1000 trials) as a function of N . Figure 12 shows the rapid
decrease of the critical number of fans Nc above which
the motion of the star becomes impossible (v̄L = 0) as a
function of ψ. Note that even when ψ = 1, the star can
move through a very small number of fans (i.e., N < 5)
which simply means that the star has the time to cross
the entire domain without encountering a fan. This is of
course a finite-size effect, since with a smaller domain and
the same number of fans, the star should be “captured”
by the fans.

Regarding the limit velocity, we observe that the motion
of the star is impossible above a number of fans N ≈ 70
for Ψ = 0.5. Here, it corresponds to a density of 14% in
the initial domain. This is equivalent to about 1.1 person
per square meter, a density which is usually considered
as a safe situation regarding crowd evacuation processes,
where a density of six persons (with non-discoidal shape)
per meter square starts to be critical in real situations [17].

Conclusion. – Despite the simplicity of our mechan-
ical force model, we hope that our results will help to
elaborate strategies to provide assistance to someone in
a middle of a static crowd through more specific modeli-
sations. Especially, knowing the MP desired velocity, it
helps to evaluate the time necessary to move from one
location to another in a static or converging crowd. Let
us mention some potential improvements for future inves-
tigations. The shape of pedestrians should be more el-
liptic, as this morphology is an important parameter at
high density. The retraction force could also be non-linear
to describe cases where an individual is very reluctant to
move too far from its favorite position but more flexible
for smaller distances. Considering polydisperse sizes of in-
dividuals could also be of great interest at high densities
in order to avoid local crystal ordering. We also plan to
study the motion of a moving person in a gradient of den-
sity as it is usually the case when moving toward a stage or
in a panic situations, where people are running in several
directions.
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