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Abstract: In this paper, we present a comprehensive framework for the simulation of multifluid flows
based on the implicit level-set representation of interfaces and on an efficient solving strategy of
the Navier-Stokes equations. The mathematical framework relies on a modular coupling approach
between the level-set advection and the fluid equations. The space discretization is performed with
possibly high-order stable finite elements while the time discretization features implicit Backward
Differentation Formulae of arbitrary order. This framework has been implemented within the FEEL++
library, and features seamless distributed parallelism with fast assembly procedures for the algebraic
systems and efficient preconditioning strategies for their resolution. We also present simulation results
for a three-dimensional multifluid benchmark, and highlight the importance of using high-order
finite elements for the level-set discretization for problems involving the geometry of the interfaces,
such as the curvature or its derivatives.

Keywords: multifluid flows; level-set method; high-order finite elements; Navier-Stokes equations;
finite-element toolbox; parallel computing

1. Introduction

Understanding and predicting the dynamics of systems consisting of multiple immiscible fluids
in contact is a great challenge for numerical computations, as they involve bulk coupling of the
fluids—related to the long-range features of the Navier-Stokes equations—and possible strong
surface effects.

Such interfaces arise in a variety of applications in physics and engineering. For instance,
the dynamics of drops immersed in another fluid [1], shocks in high-speed flows of aerospace
interest [2], vortex sheets in wakes [3] or at the boundaries between immiscible fluids in engineering
applications [4]. A lot of effort has been thus recently put in the development of efficient numerical
methods to solve these strongly coupled fluid problems while tracking the interfaces to accurately
resolve the surface effects.

One of the main difficulties of these multifluid simulations is to keep track of the interfaces
between the fluids as they evolve in time, as well as to characterize accurately their geometry. Two main
approaches are typically used to account for the interface changes. In the first one, the interface
is tracked explicitely with a moving mesh. This large class of “front-tracking” methods—which
embrace, for example, the Arbitrary Lagrangian-Eulerian (ALE [5]), the Fat Boundary Method
(FBM, [6])—feature a very accurate description of the contact surface, but at high computational
costs. The second approach uses only a fixed mesh, and represents the interface implicitly with
some additional field. For example, this is the approach used by the Volume Of Fluid (VOF [7]),
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the Phase-Field method [8,9] and the Level-Set method (LS [10]). These methods in general provide
easier coupling formulations and smaller algebraic problems but with less accuracy regarding the
description of the interface.

In this work, we present a level-set based framework for the simulation of generic multifluid
flows. It features efficient solving strategies for the fluid–incompressible Navier-Stokes (or Stokes)—
equations and the level-set advection. This framework is implemented using the open-source
FEEL++ library—Finite Element Embedded Library in C++ (v0.104.1, Feel++ Consortium,
Strasbourg, France)—[11–13] within the FluidMechanics, AdvectionDiffusionReaction, LevelSet
and MultiFluid toolboxes.

These toolboxes expose user-friendly interfaces and allow versatile parametrization of the
problems and solving strategies while managing the parallel assembly of the finite-element algebraic
systems and their resolution seamlessly.

We also present a 3D benchmark for our toolboxes. This numerical experiment is an extension of
the classic rise of a drop in a viscous fluid in 2D. We use two different setups and compare our results
with other approaches to validate our framework.

We stress that all the implementations and testcases presented below are freely available [14,15]
and can be used for a large class of fluid-structure interaction and suspension problems.

2. Simulating Multifluid Flows

We consider a system consisiting of several non-miscible fluids with different physical properties
occupying some domain Ω. We denote Ωi ⊂ Ω (Ω =

⋃
i Ωi) the domain occupied by the ith fluid.

We want to study the dynamics of such a system, which means both solving for the motion of the
fluids and tracking each fluid subdomain as it evolves in time.

2.1. Fluid Equations

In this work, we assume that all the considered fluids are incompressible, and thus obey the
incompressible Navier-Stokes equations

ρ [∂t~u + (~u · ∇)~u]−∇ · σ(~u, p) = ~fb + ~fs (1)

∇ · ~u = 0 (2)

where ~u and p are respectively the velocity and pressure fields, ρ is the fluid density, σ is the fluid stress
tensor and ~fb, ~fs are the bulk and surface forces respectively. We consider in the following Newtonian
fluids, so that

σ(~u, p) = −p I + 2µ D(~u) (3)

with µ the fluid viscosity and D(~u) = 1
2
(
∇~u +∇~uT) is the rate of strain tensor of the fluid.

Note that these equations are satisfied for each fluid independently. In a multifluid system,
they must be supplemented with boundary conditions for the velocity and pressure at both the domain
boundary and at the interface between two fluids. In this work, we assume that there is no slip at the
interfaces, so that the velocity and pressure fields are continuous at all the interfaces. The boundary
conditions at the domain boundaries can be Dirichlet or Neumann:

~u = ~gD on ∂ΩD

σ(~u, p)~n = ~gN on ∂ΩN
(4)

2.2. Interface Tracking: The Level-Set Method

Let us consider two disjoint—not necessarily connected—fluid domains Ωi, Ωj ⊂ Ω such that
∂Ωi ∩ ∂Ωj 6= ∅, and denote Γij the interface between them. In order to efficiently track this interface
Γij(t) as it evolves in time, we use the level set method [10,16,17] which provides a natural way
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to compute geometrical properties of the interface and to handle possible topological changes in a
completely Eulerian framework.

It features a Lipschitz continuous scalar function φ (the level set function) defined on the whole
domain. This function is arbitrarily chosen to be positive in Ωi, negative in Ωj and zero on Γij, so that
the interface is implicitely represented by the 0-level of φ.

As Ωi and Ωj evolve following the Navier-Stokes Equation (2) dynamics, Γij gets transported by
the velocity field u (uniquely defined at the interface by assumption and construction) and therefore
obeys the advection equation:

∂φ

∂t
+ u · ∇φ = 0. (5)

We choose as level set function the signed distance to the interface

φ(x) =


dist(x, Γij) x ∈ Ωi,

0 x ∈ Γij,
−dist(x, Γij) x ∈ Ωj,

(6)

as the intrinsic property |∇φ| = 1—which is characteristic of the Euclidean distance for all points ~x
such that arg min~x0∈Γij

|~x− ~x0| is a unit set–eases the numerical resolution of the advection equation
by ensuring that no steep gradients are present. Furthermore, the regularity of the distance function
allows us to use φ as a support for the regularized interface Dirac and Heaviside functions (see below).

However, the advection Equation (5) does not preserve the property |∇φ| = 1, and can lead to
the accumulation or rarefaction of φ iso-levels depending on the velocity. It is therefore necessary to
enforce the condition |∇φ| = 1 externally, and to reset φ(t) to a distance function without moving
the interface, Refs. [18–20]. To redistantiate φ(t), we can either solve a Hamilton-Jacobi equation,
which “transports” iteratively the isolines of φ depending on the sign of |∇φ| − 1 until the steady
“distance” solution is attained, or use the fast marching method, which computes the actual distance
to the interface for each degree of freedom using an upwind O(N log N) scheme starting from the
interface. We provide further details about our numerical implementation below (c.f. Section 3.5.3).

As mentioned above, the signed distance to the interface φ allows us to easily define the
regularized interface-related Dirac and Heaviside functions which can be used to compute integrals
on the interface [21,22] or on a fluid subdomain

δε(φ) =


0, φ ≤ −ε,

1
2ε

[
1 + cos

(
πφ
ε

)]
, −ε ≤ φ ≤ ε,

0, φ ≥ ε.

(7)

Hε(φ) =


0, φ ≤ −ε,

1
2

[
1 + φ

ε +
sin( πφ

ε )
π

]
, −ε ≤ φ ≤ ε,

1, φ ≥ ε.

(8)

where ε is a parameter controlling the “numerical thickness” of the interface. We note in these
definitions that enforcing |∇φ(t)| = 1 is critical to ensure that the interfacial support of δε and Hε is
kept constant and larger than the mesh size. Typically, we choose ε to scale with the mesh size as
ε ∼ 1.5 h, where h the average mesh size.

The Heaviside function is used to define physical quantities which have different values
on each subdomain. For example, we define the density and viscosity of two-fluid flows as
ρ = ρj + (ρi − ρj)Hε(φ) and µ = µj + (µi − µj)Hε(φ). The delta function allows to define quantities
on the interface using non-conform meshes. In particular in the variational formulations we can
replace integrals over the interface Γ with integrals over the entire domain Ω using the regularized
delta function: if φ is a signed distance function (i.e., |∇φ| = 1), we have

∫
Γ 1 '

∫
Ω δε(φ).
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In the following, we consider without loss of generality only the two-fluid case, with only one
level set function tracking the interface between fluids 1 and 2.

2.3. Finite Element Formulation

We use finite elements methods to solve Equations (2) and (5), and work with a continous Galerkin
formulation. As mentioned above, this can be done by smoothing the discontinuities of the fluid
parameters (e.g., the fluid density and viscosity) at the interfaces using the regularized Dirac and
Heaviside functions Equations (7) and (8). The continuity of the velocity and pressure fields is then
imposed strongly in the formulation, and we can work with function spaces defined on the whole
domain Ω.

We introduce L2(Ω) the usual function space of square integrable functions, H1(Ω) the
function space of square integrable functions which gradients are also square integrable and the

vectorial Sobolev spaces H1(Ω) =
{
~v ∈

[
H1(Ω)

]d
}

, H1
gD
(Ω) =

{
~v ∈ H1(Ω),~v|∂ΩD = ~gD

}
and

H1
0D
(Ω) =

{
~v ∈ H1(Ω),~v|∂ΩD =~0

}
.

The variational formulation of the two-fluid coupling problem Equations (2) and (5) then reads
Find (~u, p, φ) ∈ H1

gD
(Ω)× L2(Ω)× H1(Ω) s.t. ∀(~v, q, ψ) ∈ H1

0D
(Ω)× L2(Ω)× H1(Ω),

∫
Ω

ρ(φ) [∂t~u + (~u · ∇)~u] ·~v +
∫

Ω
σ(~u, p; µ(φ)) : ∇~v =

∫
Ω
~fb ·~v +

∫
Ω
~fs(φ) ·~v +

∫
∂ΩN

~gN ·~v (9)∫
Ω
(∇ · ~u) q = 0 (10)∫

Ω
(∂tφ + ~u · ∇φ) ψ = 0 (11)

where we have integrated by parts the stress tensor term and used the Neumann boundary condition in
Equation (4). The surface force term

∫
Ω
~fs ·~v is here generically written as a bulk integral, the surfacic

aspect being hidden in the force expression ~fs(φ) which in general contains some Dirac distribution
δ(φ). In our case, the surface forces actually account for the interfacial forces between the two fluids
(i.e., the surface tension), so that the surface integral can be evaluated as a bulk integral using the
regularized level set delta function.

3. Numerical Setup

3.1. The FEEL++ Toolboxes

The numerical implementation is performed using the FEEL++—finite element C++
library [11–13], which provides a comprehensive finite-element framework for performing HPC
resolution of generic problems. FEEL++ allows to use a very wide range of Galerkin methods and
advanced numerical methods such as domain decomposition methods including mortar and three
fields methods, fictitious domain methods or certified reduced basis. It features a very expressive
domain specific embedded language, and powerful localization techniques used for interpolation and
mixed spaces integration. It also provides automatic and efficient assembly of the algebraic systems,
as well as seamless parallelization. The FEEL++ library has been used in many contexts ranging from
the development and numerical verification of innovative mathematical methods to the simulation of
large multi-physics systems [23–25].

The FEEL++ mathematical kernel can be used to solve linear and nonlinear partial differential
equation using arbitrary order Galerkin methods (FEM, SEM, CG, DG, HDG, CRB). It naturally handles
1D, 2D, 3D manifolds using simplices and hypercubes meshes [11–13,26] and provides in particular:

i a polynomial library allowing for a wide range of polynomial expansions including Hdiv and
Hcurl elements,

ii a lightweight interface to BOOST.UBLAS, EIGEN3 and PETSC/SLEPC
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iii a scalable in-house solution strategy, in particular with specialized preconditioners which can
easily be tuned from the configuration files

iv a natural language for Galerkin methods allowing the definition of function spaces, (bi)linear
forms, operators, functionals and integrals,

v a framework that allows user codes to scale seamlessly from single core computation to thousands
of cores and enables hybrid computing.

FEEL++ provides also an environment for modeling and solving various kinds of scientific and
engineering problems. The framework, implemented in several FEEL++ toolboxes, provides a language
to describe these models. Based on JSON and INI(we use the .cfg extension) file formats, it is possible
to configure and simulate a large class of models by defining the relevant physical quantities—such as
the material properties, the boundary conditions, the sources, the couplings and the solvers. In this
paper, we focus on the MultiFluid toolbox which allows to setup all the necessary ingredients for
a multifluid flow simulation. This toolbox, which mainly manages the coupling between the fluids
present in the system, is built on others toolboxes inclined toward monophysics problem resolution,
namely the FluidMechanics, LevelSet and AdvectionDiffusionReaction toolboxes.

3.2. Fluid-Interface Coupling

The coupling between the fluid and the level-set in Equations (9)–(11) is highly nonlinear and
solving these equations monolithically would require specific nonlinear solvers adapted to each
particular coupling force ~fs(φ). In order to ease the implementation and development processes,
and to benefit from efficient solving strategies, we choose an explicit—non-monolithic—coupling in
our numerical approach.

At each time step, we first solve the fluid equations using the physical parameters and the surface
forces computed from the last-step level-set function. We then use the obtained fluid velocity to advect
the level-set and get the new interface position. We can then apply some redistantiation procedure
depending on the chosen strategy before proceeding to the next iteration.

The fluid-level-set coupling algorithm then writes

for n = 0 to Nt do
update δn+1 ← δ(φn), Hn+1 ← H(φn);
update ρn+1 ← ρ(φn), µn+1 ← µ(φn);
update ~f n+1

s ← f (φn);
~un+1, pn+1 ← solve fluid;
φn+1 ← solve level-set;
possibly redistantiate φn+1;

end

Note that the successive resolution of the fluid and level-set equations can also be iterated within
one time step, until a fix point of the system of equations is reached. In practice however, for reasonably
small time steps, the fix-point solution is already obtained after the first iteration.

3.3. Space/Time Discretization

We introduce Th ≡ {Ke, 1 ≤ e ≤ Nelt} a compatible tessellation of the domain Ω, and denote
Ωh =

⋃Nelt
e=1 Ke the discrete–unstructured–mesh associated with average mesh size h. We work within

the continuous Galerkin variational formulation framework, and use Lagrange finite elements to
spatially discretize and solve the equations governing the evolutions of the fluid and the level-set.
We thus introduce P k

h ≡ P
k
h (Ωh) the discrete (h-dependent) finite element space spanned by Lagrange

polynomials of order k.
Then, from the time interval [0, T], we select M + 1 equidistributed times: {ti = i δt, 0 ≤ i ≤ M},

where δt is the time step. In the Navier-Stokes and level-set advection equations, we apply a fully
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implicit time discretization by using a backward differentiation formula of arbitrary order N named
BDFN . Let φ be a function and denote φ(i) the function at time ti. The time derivative of this function
is then discretized as

∂tφ =
1
δt

[
α0φ(n+1) −

N

∑
i=1

αiφ
(n+1−i)

]
+O(δtN+1) (12)

where the αi are BDFN coefficients. In the numerical benchmarks reported below, we used the BDF1

and BDF2 schemes, which write respectively

BDF1 : ∂tφ ≈
1
δt

[
φ(n+1) − φ(n)

]
(13)

BDF2 : ∂tφ ≈
1
δt

[
3
2

φ(n+1) − 2φ(n) +
1
2

φ(n−1)
]

(14)

3.4. Solving the Incompressible Navier-Stokes Equations

The spatial discretization of the Navier-Stokes equations is handled via a inf-sup stable finite
element (Taylor-Hood) [P k+1

h ]d-P k
h , see e.g., [27]. We define Vh and Qh the discrete function spaces

where we search the velocity and the pressure solutions respectively. They are given by:

• Vh =
{
~v ∈ H1

gD
∩ [P k+1

h ]d
}

• Qh =
{

q ∈ P k
h

}
We need also to introduce the test function space on the velocity with

Wh =
{
~v ∈ H1

0D
(Ωh) ∩ [P k+1

h ]d
}

. Hereafter we consider the case k = 1. The discrete weak
formulation associated to Equations (9) and (10) reads:

Find (~u(n+1)
h , ph) ∈ Vh ×Qh such that ∀(~vh, ph) ∈Wh ×Qh :∫

Ωh

ρ(φ)
[α0

δt
~u(n+1)

h +
(
~u(n+1)

h · ∇
)
~u(n+1)

h

]
·~vh +

∫
Ωh

σ(~un+1
h , pn+1

h ; µ(φ)) : ∇~vh +
∫

Ωh

[
∇ · ~u(n+1)

h

]
qh

=
∫

Ωh

N

∑
i=1

αi
δt
~u(n+1−k) ·~vh +

∫
Ωh

~fb ·~vh +
∫

Ωh

~fs(φ) ·~vh +
∫

∂ΩN

~gN ·~v

The nonlinear problem presented by Equation (15) is solved monolithically with Newton’s method.
From an algebraic point of view, at each nonlinear iteration, the following classical saddle-point system
is inverted (

A B
C 0

)(
U
P

)
=

(
F
0

)
(15)

where A corresponds to the velocity block and B, C to the velocity/pressure coupling. This system is
solved with a GMRES algorithm using the SIMPLE preconditioner, see [27].

In the benchmark presented in the next section, we have only Dirichlet boundary conditions
defined on the whole boundary of the domain (i.e., ∂ΩN ≡ ∅). In this case, the problem represented
by the weak formulation (15) is not well-posed as the pressure is defined up to a constant. To solve
this issue, our strategy consists to

1. add the information to the Krylov subspace method (GMRES) that the system has a null space, i.e.,
the pressure constant.

2. rescale the pressure solution after each iteration of the Newton algorithm by imposing a mean
pressure equal to 0.

Another solution available in the FluidMechanics toolbox is to add a Lagrange multiplier in
order to impose the mean value of the pressure. The disadvantages of this approach are to increase
the stencil of the matrix and to make its block structure much denser. This implies a reduction in the
efficiency of the solver.
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3.5. The Level-Set Framework

3.5.1. Level-Set Advection

As mentioned above, the transport of the level-set by the fluid is accounted by the advection
equation Equation (11) in variational form. This equation is discretized in time using a backward
differentiation formula (BDFN) and space discretization is performed using the P k

h discrete spaces
introduced above. However, as is well-known for central differencing schemes in hyperbolic partial
differential equations, the naive Galerkin discretization of Equation (11) on P k

h can lead to spurious
oscillatory instabilities. To circumvent this well-known problem, we stabilize the discrete advection
equation. Four different stabilization methods are supported in our framework: the Streamline Upwind
Petrov-Galerkin (SUPG, [28]), the Galerkin Least Squares (GLS, [29,30]), the Sub-Grid Scale (SGS, [31])
and the Continuous Interior Penalty (CIP, [32]) methods. Detailed description of these methods can
be found in [33–35]. It should be noted that the CIP stabilization is much more costly than the three
others, as it densifies the corresponding algebraic system, and requires larger stencils and thus larger
connectivity tables.

In the benchmarks, we used the GLS stabilization method, introducing the bilinear form

SGLS = ∑
K∈Th

∫
K

τ L[ψ]
(
L[φ]−

N

∑
i=1

αiφ
(n+1−i)

)
(16)

with L[φ] = α0
δt φ + ~u · ∇φ, τ a coefficient chosen to adjust the stabilization to the local advection

strength. The choice for the parameter τ was extensively discussed, in particular for the
case of advection-diffusion-reaction (c.f. [31,36,37]), and we provide several of them in our
AdvectionDiffusionReaction toolbox. However, for the specific case of pure transient advection,
which can also be seen as an advection-reaction equation after time discretization, we use the
simple expression

τ =
1

2|~u|
h + 2α0

δt

(17)

In summary, the discrete FEM we solve for the level-set at time t + δt given the values at previous
times is

Find φ(n+1) ∈ P k
h s.t. ∀ψ ∈ P k

h ,∫
Ωh

[α0

δt
φ(n+1) + ~u(n+1) · ∇φ(n+1)

]
ψ + S

(
φ(n+1), ψ; ~u(n+1), {φ(i)}i≤n

)
=
∫

Ωh

N

∑
i=1

αi
δt

φ(n+1−i) ψ
(18)

where S
(

φ(n+1), ψ; ~u(n+1), {φ(i)}i≤n

)
is the SUPG, GLS, SGS or CIP stabilization bilinear,

which vanishes as h → 0 and in the three first cases involves the previous time steps to ensure
consistency of the stabilized equation with its continuous version.

The assembly is performed in parallel with automatic choice of the appropriate quadrature order
and seamless inter-process communication management.

The linear system is then solved using the PETSc library [38] with a GMRES solver preconditioned
with an additive Schwartz Method (GASM [39]).

3.5.2. Geometrical Quantities

In many physical situations, the immersed structures play an active role in the dynamics of the
whole system through the surface forces exerted by their “membranes” on the fluid. These forces can
most of the time be computed from the geometry of the surface as they can be related to deformations
of the interface. The level-set description of interfaces is very convenient when it comes to the
computation of the geometrical parameters required in the interface forces. As an example, the normal
and curvature of the surface can naturally be obtained from φ as
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~n =
∇φ

|∇φ| (19)

κ = ∇ ·~n (20)

These quantities are defined on the whole domain in an Eulerian way, and can therefore naturally
be used in surface integrals as introduced in Equation (9).

To compute such derivatives of fields, we use projection operators in order to work with fields
still in P k

h . To this end, we introduce the L2 projection operator Πk
L2 and the smoothing projection

operator Πk
sm, defined respectively as

Πk
L2 : Vh → P k

h

u 7→ uL2 ≡ Πk
L2(u) s.t. ∀v ∈ P k

h∫
Ωh

uL2 v =
∫

Ωh

u v (21)

and
Πk

sm : Vh → P k
h

u 7→ usm ≡ Πk
sm(u) s.t. ∀v ∈ P k

h∫
Ωh

usm v + ε
∫

Ωh

∇usm : ∇v− ε
∫

∂Ωh

(
~N · ∇usm

)
v =

∫
Ωh

u v (22)

with ε a—small—smoothing parameter typically chosen as ε ≈ 0.03 h/k. These projection operators
can be defined for both scalar and vector fields in the same way by using the appropriate contractions.

Note that the smoothing projection operator introduces some artificial diffusion which is
controlled by ε. This diffusion is reponsible for the smoothing of the projected field, but can also
introduce artefacts in the computation, so that ε needs to be carefully chosen depending on the
simulation. In practice, the smoothing operator Πk

sm is used to compute derivatives of order ≥ k + 1 of
fields in P k

h , as such order of derivation are subject to noise.
The projection operators are implemented by the Projector class, which optimizes the assembly

of the algebraic systems corresponding to Equations (21) and (22) by storing the constant terms—such
as the mass matrix for example—to prevent unnecessary computations at each projection. We usually
also store the preconditioner of the system for reuse.

The projection linear systems are solved using PETSc’s GMRES solver with a GASM
preconditioning method.

In the benchmarks below, we used ~n = Π1
L2

(
∇φ
|∇φ|

)
and κ = Π1

sm (∇ ·~n) for P1
h simulations,

and ~n = Π1
L2

(
∇φ
|∇φ|

)
and κ = Π1

L2 (∇ ·~n) for higher order ones.

3.5.3. Redistantiation

As mentioned above, as the level-set is advected by the fluid, it loses its “distance” property, i.e.,
|∇φ| = 1 is not in general preserved by the advection equation. Therefore, to ensure numerical stability
and prevent accumulation or rarefaction of the level-set iso-lines which support the regularized Dirac
and Heaviside functions, one needs to redistantiate the level-set, i.e., recover a signed distance function
to {φ = 0}. Too main approaches can be used: the first one relies on a efficient direct computation
of the distance using the well-known “fast-marching algorithm” [20], while the second consists in
solving an Hamilton-Jacobi equation [18,19] which steady state enforces |∇φ| = 1. Both methods are
implemented in our framework; we provide some details in the following.

The fast-marching method is an efficient algorithm to solve the Eikonal equation in general,
with an algorithmic complexity of O

(
Ndo f log(Ndo f )

)
. It uses the upwind nature of this equation

to “march” away from the 0-iso-level to the rest of the domain, hence the Dijkstra-like complexity.
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Our implementation of the fast-marching algorithm is based on [35], and therefore strongly relies on φ

being a P1
h field.

If the level-set is of order k > 1, we can still perform the fast-marching redistantiation using a P1
iso

space as proposed in [40]. This order-1 Lagrange function space is constructed on a mesh obtained
by replacing all the P k

h degrees of freedom by nodes. The P1
iso hence has the same number of degrees

of freedom than the original P k
h one. We can then project φk ∈ P k

h onto φ1
iso ∈ P1

iso, perform the
fast-marching on φ1

iso, and project back.
The Hamilton-Jacobi method follows a different approach, and works directly within the

finite-element framework. It consists in solving an Hamilton-Jacobi-like equation which steady
states is a signed distance function, namely

∂τφ + sign(φ) (1− |∇φ|) = 0 (23)

The sign(φ) term anchors the position of {φ = 0}, and ensures that the redistantiation front gets
transported from this 0-iso-level, inward or outward depending on the initial sign of φ. In practice,
this equation is discretized using the advection framework introduced above as

Find φ(n+1) ∈ P k
h s.t. ∀ψ ∈ P k

h∫
Ωh

[
α0

δτ
φ(n+1) + sign(φ(0))

∇φ(n)

|∇φ(n)|
· ∇φ(n+1)

]
ψ + S

(
φ(n+1)

)
=
∫

Ωh

[
sign(φ(0)) +

N

∑
i=1

αi
δτ

φ(n+1−i)

]
ψ

(24)

with sign(φ(0)) ≡ 2 Hε(φ(0))− 1
2 and S

(
φ(n+1)

)
a stabilization bilinear form. This equation is usually

solved for a few iterations with δτ ∼ h. The main advantage of the Hamilton-Jacobi approach is that
it can be used straigthforwardly for high-order level-set functions. However, it is in general slower
than the fast-marching method, and numerical errors can quickly accumulate and lead to spurious
motion of the interface resulting in strong loss of mass of the {φ ≤ 0} domain. To avoid these pitfalls,
the number of iterations and the pseudo time-step δτ must be carefully chosen, which is not an easy
task in general.

4. 3D Rising Drops Benchmark

We now present a 3D benchmark of our numerical approach, using the Navier-Stokes solver
developed with the FEEL++ library described in [41]. This benchmark is a three-dimensional extension
of the 2D benchmark introduced in [42] and realised using FEEL++ in [43]. The setup for this benchmark
was also used in [44] to compare several flow solvers.

4.1. Benchmark Problem

The benchmark consists in simulating the rise of a 3D drop in a Newtonian fluid. The equations
solved are the aforementioned coupled incompressible Navier Stokes equations for the fluid and
advection equation for the level set Equations (9)–(11) with ~fb and ~fs respectively the gravitational and
surface tension forces, defined as:

~fb = ρφ ~g (25)

~fs = σκ~n
∣∣∣
Γ
' σκ~n δε(φ) (26)

with ~g ≡ −0.98~ez the gravity acceleration and σ the surface tension.
We consider Ω a cylinder with radius R = 0.5 and height H = 2, filled with a fluid and containing

a droplet of another imiscible fluid. We denote Ω1 = {~x, s.t. φ(~x) > 0} the domain outside the
droplet, Ω2 = {~x, s.t. φ(~x) < 0} the domain inside the drop and Γ = {~x, s.t. φ(~x) = 0} the
interface. We impose no-slip boundary conditions ~u

∣∣
∂Ω = 0 on Ω walls. The simulation is run from

t = 0 to 3.
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Initially, the drop is spherical with radius r0 = 0.25 and is centered on the point (0.5, 0.5, 0.5)
assuming that the bottom disk of the Ω cylinder is centered at the origin. Figure 1 shows this
initial setup.

Figure 1. Initial setup for the benchmark.

We denote with indices 1 and 2 the quantities relative to the fluid in respectively Ω1 and Ω2.
The parameters of the benchmark are then ρ1, ρ2, µ1, µ2 and σ. We also define two dimensionless
numbers to characterize the flow: the Reynolds number which is the ratio between inertial and viscous
terms and is defined as

Re =
ρ1
√
|~g|(2r0)3

ν1
,

and the Eötvös number represents the ratio between the gravity force and the surface tension

E0 =
4ρ1|~g|r2

0
σ

.

Table 1 reports the values of the parameters used for two different test cases proposed in [44].
At t = 3, the first one leads to an ellipsoidal-shaped drop while the second one gives a skirted shape
due to the larger density and viscosity contrasts between the inner and outer fluids.

Table 1. Numerical parameters taken for the benchmarks.

Tests ρ1 ρ2 ν1 ν2 σ Re E0

Case 1 (ellipsoidal drop) 1000 100 10 1 24.5 35 10
Case 2 (skirted drop) 1000 1 10 0.1 1.96 35 125

To quantify our simulation results, we use three quantities characterizing the shape of the drop at
each time-step: the center-of-mass

~xc =
1
|Ω2|

∫
Ω2

~x,

the rising velocity—focusing on the vertical component

~uc =
1
|Ω2|

∫
Ω2

~u,
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and the sphericity—defined as the ratio between the area of a sphere with same volume and the area
of the drop—

Ψ =

4π

(
3

4π
|Ω2|

) 2
3

|Γ| .

Note that in the previous formulae, we have used the usual “mass” and area of the drop,
respectively defined as |Ω2| =

∫
Ω2

1 and |Γ| =
∫

Γ 1.

4.2. Simulation Setup

The simulations have been performed on the supercomputer of the Grenoble CIMENT HPC
center up to 192 processors. To control the convergence of our numerical schemes, the simulations
have been run with several unstructured meshes, which characteristics are summarized in Table 2.

We run the simulations looking for solutions in finite element spaces spanned by Lagrange
polynomials of order (2, 1, k) for respectively the velocity, the pressure and the level set. The
corresponding numbers of degrees of freedom for each mesh size are reported in Table 2 and the
numerical parameters used for the simulations are provided in Table 3.

Table 2. Mesh properties and degrees of freedom: mesh characteristic size, number of tetrahedra,
number of points, number of order 1 degrees of freedom, number of order 2 degrees of freedom and
total number of degrees of freedom of the simulation.

Mesh Properties Finite-Element DOF

h Tetrahedra Points Order 1 DOF Order 2 DOF #DOF

0.025 380,125 62,546 62,546 490,300 1,595,992
0.02 842,865 136,932 136,932 1,092,644 3,551,796

0.0175 1,148,581 186,136 186,136 1,489,729 4,841,459
0.015 1,858,603 299,595 299,595 2,415,170 7,844,700

0.0125 2,983,291 479,167 479,167 3,881,639 12,603,251

Table 3. Numerical parameters used for simulations and resulting simulation times for each test case.

Numerical Parameters Total Time (h)

h #proc ∆t Case 1 Case 2

0.025 64 1× 10−2 3.5 3.6
0.02 128 9× 10−3 4.8 5.1

0.0175 128 8× 10−3 8.9 9.5
0.015 192 7× 10−3 12.3 13.5

0.0125 192 6× 10−3 33.8 39.6

The Navier-Stokes equations are solved using Newton’s method and the resulting linear system
is solved with a preconditioned flexible Krylov GMRES method using the SIMPLE preconditioner
introduced in [45]. The inner “inversions” of the velocity block matrix are performed using a block
Jacobi preconditioner, with an algebraic multigrid (GAMG) preconditioner for each velocity component
block. Note that these velocity block inversions are only preconditioned—without any KSP iteration.
The nested Schur complement “inversion” required for SIMPLE is solved with a few iterations of GMRES

preconditioned with an algebraic multigrid (GAMG).
The linear advection equation is solved with a Krylov GMRES method, preconditioned with an

Additive Schwarz Method (GASM) using a direct LU method as sub-preconditionner.
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5. Results

In this section, we analyze the simulations of the rising drop for the two cases with
low-order—k = 1—Sections 5.1 and 5.2 and high-order—k = 2—Section 5.3 level set discretization
space. Except for the comparison between the fast-marching and the Hamilton-Jacobi methods
Section 5.1.1, the level set redistantiations were performed with the fast-marching method every
10 time-steps.

5.1. Case 1: The Ellipsoidal Drop

Figure 2a shows the shape of the drop in the x-z plane at the final t = 3 time step for the different
aforementioned mesh sizes. The shapes are similar and seem to converge when the mesh size is
decreasing. The drop reaches a stationary circularity as shown in Figure 2d, and its topology does not
change. The velocity increases until it attains a constant value. Figure 2c shows the results obtained for
the different mesh sizes. The evolution of the mass of the drop versus time is shown in Figure 2e. It
highlights the rather good mass conservation property of our simulation setup, as about 3% of the
mass is at most lost for the coarsest mesh, while the finest one succeeds in keeping the loss in mass
below 0.7%.

We also note that our simulation perfectly respects the symmetry of the problem and results in a
axially symmetric final shape of the drop, as shown in Figure 3.
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z

h = 0.025

h = 0.02

h = 0.0175

h = 0.015

h = 0.0125

(a) Shape at final time (t = 3) in the vertical
x− z plane.
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(b) zc center-of-mass vertical component.
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(d) Sphericity.

Figure 2. Cont.
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Figure 2. Results for the ellipsoidal test case (case 1).
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Figure 3. Shape at final time in the x-z and y-z planes for test case 1 (h = 0.0125).

5.1.1. Comparison between Hamilton-Jacobi and Fast-Marching Reinitialization

As mentioned in Section 3.5.3, two reinitialization procedures can be used to overcome the
“deformation” of the level set which becomes more and more different from the distance to the
interface function as it is advected with the fluid velocity. The fast-marching method resets the
values of φ on the degrees of freedom away from the interface to match the corresponding distance.
The Hamilton-Jacobi method consists in solving an advection equation which steady solution is the
wanted distance function.

We have run the h = 0.0175 simulation with both reinitialization methods to evaluate the
properties of each one, and compare them using the monitored quantities. Figure 4 shows the
respective shapes of the drop at final time (t = 3), and Figure 5 gives the obtained results.

The first observation is that the mass loss (see Figure 5e) is considerably reduced when using
the FM method. It goes from about 18% mass lost between t = 0 and t = 3 for the Hamilton-Jacobi
method to less than 2% for the fast-marching method. This resulting difference of size can be noticed
in Figure 4. The other main difference is the sphericity of the drop. Figure 5d shows that when using
the fast-marching method, the sphericity decreases really quickly and stabilises to a much lower value
than the one obtained with the Hamilton-Jacobi method. This difference can be explained by the
fact that the fast-marching method does not smooth the interface. The shape can then contain some
small irregularities leading to a bad sphericity. Even so, with both methods the sphericity stays quite
constant after the first second of the simulation. The rising velocity and the vertical position do not
show any significant difference between the two reinitialization methods.
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(a) Fast Marching method (b) Hamilton-Jacobi method

Figure 4. 3D shape at final time (t = 3) in the x-y plane for test case 1 (h = 0.0175).
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(a) Shape at final time (t = 3) in the vertical
x− z plane.

0 0.5 1 1.5 2 2.5 3
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

t

z c

FM

HJ

2.5 2.6 2.7 2.8 2.9 31.25

1.3

1.35

1.4

(b) zc center-of-mass vertical component.
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(c) Vertical velocity.
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Figure 5. Cont.
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Figure 5. Comparison between the Fast Marching method (FM) and the Hamilton-Jacobi (HJ) method
for test case 1 (ellipsoidal drop). The characteristic mesh size is h = 0.0175.

5.1.2. Comparison with Previous Results

Figure 6 shows a plot of our results compared to the ones presented in [44]. In this paper,
the authors perform simulations on the same setup and with the same test cases as considered here.
To ensure consistency of their results, they use three different flow solvers (hence three different
space discretization methods) coupled with two different interface capturing methods: the DROPS
and NaSt3D solvers coupled to a level set approach, and the OpenFOAM solver which uses a
volume-of-fluid method.

To evaluate the effect of the characteristic mesh size, we plot the results we obtained for the
simulations run with both h = 0.025 and h = 0.0125 along with the results from [44].

We can observe an overall good agreement between our results and the benchmark performed
in [44].
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(a) zc center-of-mass vertical component.

Figure 6. Cont.
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(b) Vertical velocity.
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Figure 6. Comparison between our results (denoted FEEL) and the ones from [44] for the test case 2
(the ellipsoidal drop).

5.2. Case 2: The Skirted Drop

In the second test case, the drop gets more deformed because of the lower surface tension and
the higher viscosity and density contrasts. Figure 7 displays the monitored quantities for this test
case. We observe that the shape of the “skirt” of the drop at t = 3 is quite strongly mesh dependent,
but converges as the mesh is refined. The other characteristics of the drop are not so dependent on the
mesh refinement, even for the geometrically related ones, such as the drop mass, which shows a really
small estimation error (only 2% difference between the coarsest and finest meshes), and displays the
really good conservation properties of our simulations. We again also note in Figure 8 the symmetry
of the final shape of the drop, which highlights the really good symmetry conservation properties of
our approach.
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(a) Shape at final time (t = 3) in the vertical
x− z plane.
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Figure 7. Cont.
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Figure 7. Results for the skirted test case (case 2).
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Figure 8. Shape at final time in the x-z and y-z planes for test case 2 (h = 0.0125).

5.2.1. Comparison between Hamilton-Jacobi and Fast-Marching Reinitialization

As for the test case 1, we provide a comparison of the results for the test case 2 obtained using
either the fast-marching or the Hamilton-Jacobi reinitialization method. The comparison is performed
with an average mesh size (h = 0.0175). The obtained shapes are shown in Figure 9 and the results
are given in Figure 10. As before, they highlight noticeable differences between the two methods for
geometrically related quantities such as mass loss, sphericity and final shape. We can even observe
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a non-negligible difference for the latter in the region of the “skirt”. This difference, mainly related
to the diffusive properties of the Hamilton-Jacobi method, can also be observed on the 3D shapes in
Figure 9. The good agreement of the results obtained using the fast-marching method tends to suggest
that the Hamilton-Jacobi method is not accurate enough—or would require more careful and costly
adjustment of its parameters—for this kind of three-dimensional simulation.

(a) Fast Marching method (b) Hamilton-Jacobi method

Figure 9. 3D shape at final time (t = 3) in the x-y plane for test case 2 (h = 0.0175).
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(a) Shape at final time (t = 3) in the vertical
x− z plane.
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Figure 10. Cont.
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Figure 10. Comparison between the Fast Marching method (FM) and the Hamilton-Jacobi (HJ) method
for test case 2 (skirted drop). The characteristic mesh size is h = 0.0175.

5.2.2. Comparison with Previous Results

As in Section 5.1.2, we compare our results to the benchmark [44], and show the relevant quantities
in Figure 11.
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(a) zc center-of-mass vertical component.
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Figure 11. Comparison between our results (denoted FEEL) and the ones from [44] for the test case 2
(the skirted drop).
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We also observe a good agreement between our simulations and the ones from the benchmark.
We however note that the final shape of the skirted drop is very sensitive to the mesh and none of the
groups agree on the exact shape which can explain the differences that we see on the parameters in
Figure 11 at time t > 2.

5.3. High-Order Simulations

As already mentioned, our framework naturally allows the use of high-order Galerkin
discretization spaces. As an illustration, we present here benchmark simulation results performed
using finite element spaces spanned by Lagrange polynomials of order (2, 1, 2) and (2, 1, 3) for each
test case. The mesh size considered here is h = 0.02, and the results are shown in Figures 12 and 13
for test cases 1 and 2 respectively. We expect the increase in order of the level-set field to improve the
overall accuracy.

We can indeed observe that the final shapes of high-order simulations look smoother in both
cases, as confirmed by the sphericity plots. The effect is highly noticeable on the “skirt” which appears
for the second test-case, which looks even smoother than the one obtained with the finest (h = 0.0125)
(2, 1, 1) simulation.

Let us also highlight that the small differences observed with the (2, 1, 3) simulations, in particular
for the final shapes, are most likely related to the absence of articifial diffusion error in the computation
of geometrical quantities (especially for the curvature), which suggest more robust and realistic results
for these simulations.

We can also notice that more “physically” controlled quantities, such as the position of
the center-of-mass and the vertical velocity are less impacted by the polynomial order of the
level-set component, which is not so surprising, as these quantities are mainly determined by the
(level-set-dependent) fluid equations, which discretization orders where kept constant for this analysis.
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x− z plane.
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Figure 12. Comparison between P1
h , P2

h and P3
h simulations for the ellipsoidal test case (h = 0.02).
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(a) Shape at final time (t = 3) in the vertical
x− z plane.
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h simulations for the skirted test case (h = 0.02).

6. Conclusions and Outlooks

We have presented in this paper a comprehensive numerical framework for the simulation of
multifluid flows. This framework is based on level-set methods solved by a (possibly high-order) finite
element method. The explicit coupling between the level-set and the fluid has proven to be efficient
and has allowed us to take advantage of reliable and efficient preconditioning strategies to solve the
fluid equations.

The framework has been implemented within the FEEL++ toolboxes and leverages the efficiency
of the library to run on large numbers of processors in parallel. It also features user-friendly interfaces,
and allows for easy model setup and parametrization using the JSON and CFG standard formats.
The use of state-of-the-art metaprogramming techniques allows to seamlessly perform simulations in
two or three dimension, and to increase the polynomial order of the finite elements. We highlight again
that both the implementation and the benchmarks configuration files are open-source and available
online [14,15].

The presented MultiFluid framework has been validated using a three-dimensional two-fluid
numerical benchmark and achieved results in agreement with the simulations performed with
other methods.

We have also compared two different level-set reinitialization procedures (the fast-marching and
the Hamilton-Jacobi methods) and observed significantlty different behaviors, in particular the former
is much better at mass conservation than the latter.

High-order simulations were performed to highlight the increased smoothness of the computed
interfaces. High-order discretizations of the level-set function also greatly helps for the computation
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of geometrical quantities, such as the curvature of the interface. It avoids the need for artificial
diffusion in the computation of such derivatives, which can be prove essential for accurate accounts of
surface effects. In particular the (2, 1, 3) simulations which feature complete diffusion-free geometrical
quantities suggest that increasing the order of the level-set discretization can be of great interest when
seeking highly accurate results regarding shapes, or when physical forces involving high derivatives
of the level-set field are present.

Further improving the accuracy of the level-set and related quantities using higher order and/or
hybrid methods is still ongoing.

The framework presented and validated here provides the building blocks for the simulation of
complex fluids in complex geometries. The use of a high-order level-set method to track interfaces
allows in particular the simulation of a large number of immersed vesicles or cells with implicit account
of the surface forces at constant cost with respect to the number of particles. Its versatility shall be
used in a near future to better understand the flow of blood cells in realistic vascular systems, or the
dynamics of swimming droplets interacting with external surfactants.
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